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Motivation - Conversational Recommender Systems

Traditional recommender systems:

data sparsity

cold-start problem

Conversational recommender systems:

alleviate data sparsity by conversations

mitigate the cold-start problem
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Motivation - Limitations of existing CRSs

Heavily depend on high-quality key-terms carefully labeled by humans

I Incompletely-labeled key-terms =⇒ Performance degradation

Leverage the feedback to different conversaional key-terms separately

I Large candidate set of conversational key-terms =⇒ Sample-inefficiency

This work: utilize the graph structure!
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Problem Formulation

Item set A with |A| = N

Item a’s feature vector: xa ∈ Rd

Key-term set K with |K| = K

Key-term k’s feature vector: x̃k ∈ Rd

Knowledge graph G = (E ,R) where E = A ∪ K is the set of entities

and R is the set of relations

θ∗ ∈ Rd and θ̃∗ ∈ Rd are user preference vectors on items and key-

terms respectively

Receive rewards rat ,t = x>atθ
∗ + εt and r̃kt ,t = x̃>kt θ̃

∗ + ε̃t after rec-

ommending item at and conducting one conversation on key-term kt

respectively

The conversation frequency: g(t)1
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Problem Formulation

Learning objective: minimizing the expected cumulative regret2

R(T ) = E

[
T∑
t=1

max
a∈A

x>a θ∗ −
T∑
t=1

rat ,t

]
.

Challenges:

Key-terms are incompletely-labeled?

I Propogate the user preference of key-terms on the graph

Sample-inefficient when the candidate key-term set is large?

I Leverage the graph to select the most informative key-terms
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Figure 1. An overview of our knowledge-aware conversational preference elicitation
framework.
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Algorithm - Item Recommendation

Learn θ̃∗ to accelerate the learning of θ∗

θ̃t = arg min
θ

t∑
τ=1

∑
k∈Kτ

(
x̃>k,τθ − r̃k,τ

)2
+ λ̃‖θ‖22

=M̃−1
t b̃t , (1)

where Kτ is the set of selected key-terms at iteration τ , λ̃ is the regu-

larization parameter and

M̃t =
t∑

τ=1

∑
k∈Kτ

x̃k,τ x̃>k,τ + λ̃I , b̃t =
t∑

τ=1

∑
k∈Kτ

x̃k,τ r̃k,τ .
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Algorithm - Item Recommendation

Then θ∗ could be learned by

θt = arg min
θ
λ

t∑
τ=1

(x>aτθ − raτ )2 + (1− λ)‖θ − θ̃t‖22

=M−1
t (bt + (1− λ)θ̃t) , (2)

where λ ∈ [0, 1] balances the trade-off between the item-level and key-

term-level information and

Mt = λ
t∑

τ=1

xaτ x
>
aτ + (1− λ)I , bt = λ

t∑
τ=1

xaτ raτ .
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Algorithm - Item Recommendation

Recommend item according to optimism principle in the face of uncer-

tainty (OFU)

at = arg max
a∈A

x>a θt + λα‖xa‖M−1
t

+ (1− λ)α̃‖M−1
t xa‖M̃−1

t
, (3)

where α and α̃ are the hyper-parameters representing the exploration

level on items and key-terms respectively.
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Algorithm - Conversational Preference Propagation

Propogate user preference using graph structural and semantic infor-
mation

Graph structural information:

SimJ (k , k ′) = |Ph
k ∩ Ph

k ′ |/|Ph
k ∪ Ph

k ′ | ,

where Ph
k is the set of paths starting from key-term k with length no

larger than h.

Semantic information: cosine similarity SimC(k , k ′)

Overall similarity metric:

Sim(k , k ′) =γ SimC(k , k ′) + (1− γ) SimJ (k , k ′)

=γ
x̃>k x̃k ′

‖x̃k‖2‖x̃k ′‖2
+ (1− γ)

|Ph
k ∩ Ph

k ′ |
|Ph

k ∪ Ph
k ′ |
.

ZYXL GraphConUCB April 28, 2022 10 / 21



11/21

Algorithm - Conversational Preference Propagation

Constructs a pseudo preference as Sim(k , k ′) ∗ r̃k to estimate r̃k ′ using

true user key-term-level feedback r̃k

Updates θ̃t utilizing the true feedback and all the pseudo graph feed-

back

Referred to as pseudo graph feedback (PGF) module
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Algorithm - Graph-based Conversation

Assume the variance of key-term level noise ε̃t is σ̃2

Gauss-Markov theorem shows that

Cov(θ̃t) = σ̃2M̃−1
t .

Leverages optimal experimental design (OED) to select key-terms to

make the determinant of M̃−1
t diminish fast
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Algorithm - Graph-based Conversation

The optimal distribution π∗ satisfies

π∗ = arg max
π

log det M̃t(π)

= arg max
π

log det

(
g(t)

∑
k∈K

π(k)Gh
k + λ̃I

)
,

where Gh
k =

∑
k ′∈N h

k
x̃k ′ x̃>k ′ is the Gramian matrix generated by the

feature vectors of key-term k and k’s h-hop neighbors

To approximately solve this problem, compute the best rank-one ap-

proximation of Gh
k as

x̃h
k = min

x∈Rd
‖Gh

k − xx>‖F . (4)
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Algorithm - Graph-based Conversation

Find π∗h over {x̃h
k }k∈K such that

π∗h = arg max
π

log det

(∑
k∈K

π(k)x̃h
k (x̃h

k )> + λ̃I

)
,

which could be solved by canonical optimal design methods.

Sample key-terms from π∗h to conduct conversations

Referred to as graph-based optimal design (GOD) module
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Experiments

Research questions:

RQ1 Overall performance of GraphConUCB?

RQ2 Performance of GraphConUCB given the items with incompletely

labeled key-terms?

RQ3 Ablation study of the PGF module and the GOD module?
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Experiments - Overall Performance (RQ1)
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Figure 2. Overall performance comparison on MovieLens-20M, Last.FM and
Amazon-Book datasets.

GraphConUCB improve over ConUCB by 52.36%, 10.48% and 10.11%

when T = 1M on MovieLens-20M, Last.FM and Amazon-Book datasets

respectively

ZYXL GraphConUCB April 28, 2022 16 / 21



17/21

Experiments - Learning with Incompletely Labeled
Key-terms (RQ2)
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(a) MovieLens-20M dataset.

0.7 0.8 0.9 1.0
Deletion Ratio

0

1000

2000

3000

4000

In
cr

ea
se

d 
Cu

m
ul

at
iv

e 
Re

gr
et

ConUCB
GraphConUCB

(b) Last.FM dataset.

Figure 3. Increased cumulative regret under varying deletion ratio of key-terms.

Compared to the baseline, our algorithm can handle the items with

incompletely labeled key-terms more effectively
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Experiments - Ablation Study (RQ3)
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(a) MovieLens-20M dataset.
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(b) Last.FM dataset.

Figure 4. Exploration ratio of key-terms in conversations.

Exploration ratio of key-terms in GraphConUCBw/o GOD grows rapidly

GraphConUCB achieves the fastest exploration ratio of key-terms
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Conclusions

In this work:

A pseudo graph feedback (PGF) module to effectively propagate the

user preferences

A graph-based optimal design (GOD) module which selects the most

informative key-terms with the leverage of the graph structure

ZYXL GraphConUCB April 28, 2022 19 / 21



20/21

The End

Q&A?

Thank you!
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